Blind source separation using least-squares type adaptive algorithms

نویسندگان

  • Juha Karhunen
  • Petteri Pajunen
چکیده

In this paper adaptive least-squares type algorithms are introduced for blind source separation. They are based on minimizing a criterion used in context with nonlinear PCA (Principal Component Analysis) networks. The new algorithms converge clearly faster and provide more accurate results than typical current adaptive blind separation algorithms based on instantaneous gradients. They are also applicable to the di cult case of nonstationary mixtures. The proposed algorithms have a close relationship to a nonlinear extension of Oja's PCA learning rule. A batch algorithm based on the same criterion is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind source separation of instantaneous MIMO systems based on the least-squares Constant Modulus Algorithm

Blind symbol detection for mobile communications systems has been widely studied and can be implemented by using either adaptive or iterative techniques. However, adaptive blind algorithms require data of sufficient length to converge. Therefore, in a rapidly changing environment, they are likely unable to track the changing channels. In such a situation, one possible solution is to use iterati...

متن کامل

Least-Squares Methods for Blind Source Separation Based on Nonlinear PCA

In standard blind source separation, one tries to extract unknown source signals from their instantaneous linear mixtures by using a minimum of a priori information. We have recently shown that certain nonlinear extensions of principal component type neural algorithms can be successfully applied to this problem. In this paper, we show that a nonlinear PCA criterion can be minimized using least-...

متن کامل

Spatio-Temporal FastICA Algorithms for the Blind Separation of Convolutive Mixtures

This paper derives two spatio–temporal extensions of the well-known FastICA algorithm of Hyvärinen and Oja that are applicable to the convolutive blind source separation task. Our time–domain algorithms combine multichannel spatio–temporal prewhitening via multistage least-squares linear prediction with novel adaptive procedures that impose paraunitary constraints on the multichannel separation...

متن کامل

The nonlinear PCA criterion in blind source separation: Relations with other approaches

We present new results on the nonlinear PCA (Principal Component Analysis) criterion in blind source separation (BSS). We derive the criterion in a form that allows easy comparisons with other BSS and Independent Component Analysis (ICA) contrast functions like cumulants, Bussgang criteria, and information theoretic contrasts. This clariies how the nonlinearity should be chosen optimally. We al...

متن کامل

A new General Weighted Least-Squares Algorithm for Approximate Joint Diagonalization

Independent component analysis (ICA) and other blind source separation (BSS) methods are important processing tools for multi-channel processing of electroencephalographic data and have found numerous applications for brain-computer interfaces. A number of solutions to the BSS problem are achieved by approximate joint diagonalization (AJD) algorithms, thus the goodness of the solution depends o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997